PM SHRI KENDRIYA VIDYALAYA
BERHAMPUR

e —”
Frg foered dTed

COMPUTER SCIENCE PROJECT
2023-24

PROJECT TOPIC:

Submitted by:

Name: BIBHASINDHU PRADHAN
Class: XII1-A

CBSE Roll Number:

Under the Guidance of:
SAROJ KANTA MISRA, PGT (CS)

CERTIFICATE

This is to certify that BIBHASINDHU PRADHAN of class: XII - A
of KENDRIYA VIDYALAYA BERHAMPUR has done his project
on LIBRARY MANAGEMENT SYSTEM (DIGITAL LIBRARY)
under my supervision. He has taken interest and has shown
at most sincerity in completion of this project.

| certify this project up to my expectation & as per guidelines
issued by CBSE, NEW DELHI.

Internal Examiner External Examiner

Principal

ACKNOWLEDGMENT

It is with pleasure that | acknowledge my sincere gratitude to
our teacher, MR. SAROJ KANTA MISRA, PGT (CS) who taught
and undertook the responsibility of teaching the subject
computer science. | have been greatly benefited from his
classes.

| am especially indebted to our Principal MR. SHIVAPRIYA
DASH who has always been a source of encouragement and
support and without whose inspiration this project would
not have been a successful | would like to place on record
heartfelt thanks to him.

Finally, | would like to express my sincere appreciation for all
the other students for my batch their friendship & the fine

time that we all shared together.

HARDWARES AND SOFTWARES
REQUIRED

HARDWARES
1. Desktop Computer / Laptop

2. Mobile Phone

SOFTWARES
1. Python (Latest Version)
2. MySQL
3. MySQL-Connector-Python,Requests,Wikipedia-API,
Datetime, Pyfiglet Modules

e

Database System

TABLE OF CONTENTS

Topic

Certificate

Acknowledgement

Hardwares and Softwares

Required

Introduction

Python Source Code
MySQL Database

Outputs

References

INTRODUCTION

The project LIBRARY MANAGEMENT SYSTEM (DIGITAL
LIBRARY) includes enrolment of users, adding of books into
the library system. The software has the facility to search for
news, Wikipedia articles. It includes an authentication facility
for admin and user to login into the admin panel and user
panel resp. of the system. User can see the books available,
details of books issued by the user in the digital library. The
Library Management System can be login using a user ID and
password. It is accessible either by an admin or user. Only
the admin can add, delete and update the data of users and
books into the database. The data can be retrieved easily.
The interface is very user-friendly. The data are well
protected for personal use and makes the data processing
very fast.

The purpose of the project entitled as “DIGITAL LIBRARY” is
to computerize the Front Library Management to develop
software which is user friendly, simple, fast, and cost-
effective. It also has a notes facility where the user can add

notes at any point of the program into the database.

LIBRARY

A library is a collection of books, and possibly other materials
and media, that is accessible for use by its members and
members of allied institutions. Libraries provide physical or
digital materials, and may be a physical location, a virtual
space, or both. A library's collection normally includes
printed materials which may be borrowed, and usually also
includes a reference section of publications which may only
be utilized inside the premises.

Libraries can vary widely in size and may be organised and
maintained by a public body such as a government, an
institution (such as a school or museum), a corporation, or a
private individual. In addition to providing materials, libraries
also provide the services of librarians who are trained
experts in finding, selecting, circulating and organising
information while interpreting information needs and
navigating and analysing large amounts of information with a

variety of resources.

LIBRARY MANAGEMENT SYSTEM
(DIGITAL LIBRARY)

Library management system (LMS), is an enterprise resource
planning system for a library, used to track enrolled users,
available books, books issued and to whom, books returned
and it’s fines, etc.

The purpose of a library management system is to operate a
library with efficiency and at reduced costs. The system being
entirely automated streamlines all the tasks involved in
operations of the library.

The library management system software helps in reducing
operational costs. Managing a library manually is labour

intensive and an immense amount of paperwork is involved.

The system saves time for both the user and the librarian.

With just a click the user can search for the books available in
the library. The librarian can answer queries with ease
regarding the availability of books. Adding, removing or
editing the database is a simple process. Adding new users or
cancelling existing userships can be done with ease.

The automated system saves a considerable amount of time

as opposed to the manual system.

FUNCTIONS LIST

*Admin
» Login into User Panel
» Modify User
e Add User
e Delete User
e Update User
» Display Users
» Search Users
» Modify Book
e Add Book
e Delete Book
e Update Book
> Issue Book
» Return Book
» Change Admin
» Home
» Back
> Exit
“*User
» About Library

» News
» Wikipedia Articles

» Display Books

» Search Books
» Issued Books Details
> Notes
e Modify Notes
o Add Notes
o Delete Notes
o Update Notes
e Display Notes
e Search Notes
» Home
» Back
> Exit

Python Source
Code

OCOONOUITRWNEF

Importing necessary libraries
import mysqgl.connector

import pyfiglet

import requests

import wikipediaapi

from datetime import datetime

Connect to the MySQL database

db = mysqgl.connector.connect (
host="localhost",
user="root",
password="admin",
database="1library",

= db.cursor ()

Function to display the return policy information
def returnPolicy():

print ("Return Policy : ")

print ("The issued book should be returned within 14 days (2 weeks).")

print(

"If the user kept the issued book for more than 14 days, then the

user have to pay ¥I5 as fine for each extra day the user kept the issued
book."

H)

Function to calculate the length of a given integer after converting it
to a string
def length(i):

s = str(i

)
length = len(s) + 2

return length

Function to display a message for an invalid option
def validOption():

print ("Please enter a wvalid option!")

print ("

Function to handle program exit
def exiting() :

print ("\033[3;34m \033[0;0m")
print ("\033[3;33mExiting the program.")
print ("Thank You!\033[0;0m")
print ("\033[3;34m \033[0;0m")
exit ()

v
v

Function to display the user menu and handle user choices
def userMenu() :

Displaying options for the user

print ("1. Add Note")

print ("2. Home")

print ("3. Back")

print ("4. Exit")

Taking user choice as input

userChoice = int (input ("Enter your Choice to Continue : "))

Handle user choices

if userChoice ==
addNote ()

elif userChoice ==
home ()

elif userChoice ==
user ()

elif userChoice ==
exiting ()

else:
validOption ()

Function to display information about the library

def aboutLibrary():
Retrieve the name of the librarian who 1s also an admin
c.execute ("SELECT userName FROM users WHERE adminStatus='admin'")
userName = c.fetchall()

Retrieve the total number of books and users in the library
c.execute ("SELECT * FROM books")
totalBooks = c.fetchall ()

c.execute ("SELECT * FROM users")
totalUsers = c.fetchall()
db.commit ()

print ("

print ("About Library")

print ("

Display library information

print ("Year of Library's Establishment : ", 2023)

print ("Name of the Librarian : ", userName[0][0])

print ("Total Number of Books Available in the Library
len(totalBooks))

print ("Total Number of Users Enrolled in the Library
len(totalUsers))

print ("

userMenu ()

Function to display the 1list of books in the library
def displayBooks():

print ("

print ("Display Books")

print ("

Retrieve all books from the database

c.execute ("SELECT * FROM books ORDER BY bookId")

result = c.fetchall()

db.commit ()

Display books if available, otherwise notify the user
if result:
print ("Books available in the Digital Library are :")
print ("
i=0
for row in result:
i +=1
r = length (i)
print (£"{i}. Book ID : {row[O]}")
print (" " f"Book Name : {row[1]}")
print (" f"Publication Year : {row[2]}")
print (" f"Author Name : {row[7]}")
print (" f"Issue Status : {row[8]}")
print ("
userMenu ()
else:

Notify the user if no books are found
print ("No books found.")

print ("

userMenu ()

Search books menu options
def searchBooksMenu() :
print ("1. Add Note")
print ("2. Home")
print ("3. Back")
print("4. Exit")
userChoice = int (input ("Enter your Choice to Continue : "))

User choices handling

if userChoice ==
addNote ()

elif userChoice ==
home ()

elif userChoice ==
searchBooks ()

elif userChoice ==
exiting ()

else:
validOption ()

Function to search books by Book ID
def searchBooksbyId():
print ("
print ("Search Books by Book ID")
print ("
Get user input for Book ID

bookId = int (input ("Enter the Book ID to search the Book : "))
print ("

Execute SQL query to retrieve book information by Book ID
c.execute ("SELECT * FROM books WHERE bookId=%s", (bookId,))
result = c.fetchall ()

db.commit ()

Display search results if books are found, otherwise notify the user
if result:
print (£'Book available in the Digital Library with the Book ID
"{bookId}" is :")
print ("
i =20
for row in result:
i +=1
r = length (i)
print (£"{i}. Book ID : {row[O]}")
print (" " + £"Book Name : {row[1]}")
print (" + f£"Publication Year : {row[2]}")
print (" + f"Author Name : {row[7]}")
print (" + f"Issue Status : {row[8]}")
print ("
searchBooksMenu ()
else:
print (£'No book found with the book id "{bookId}".')
print ("
searchBooksMenu ()

Function to search books by keyword
def searchBooksbyKeyword() :

13| Page

print ("Search Books by Keyword")

print ("

Get user input for keyword

keyword = input ("Enter a Keyword to search Books : ")
print ("

Execute SQL query to retrieve books by keyword
c.execute (
"SELECT * FROM books WHERE bookName LIKE '%{}%' ORDER BY
bookId".format (keyword)
)
result = c.fetchall ()
db.commit ()

Display search results if books are found, otherwise notify the user
if result:
print(
f'Books available in the Digital Library with the Keyword
"{keyword}" are :'

for row in result:
i +=1
r = length (i)
print (£"{i}. Book ID : {row[O]}")
print (" " + £"Book Name : {row[1l]}")
print (" + f£"Publication Year : {row[2]}")
print (" + f£"Author Name : {row[7]}")
print (" + f"Issue Status : {row[8]}")
print ("
searchBooksMenu ()

else:
print (£'No books found with the keyword "{keyword}".')

print ("
searchBooksMenu ()

Function to display search options for books
def searchBooks() :

print ("

print ("Search Books")

Search by Book ID")
Search by Keyword")
Home")
. Back")
print ("5. Exit")
userChoice = int (input ("Enter your Choice to Continue : "))
print ("

User choices handling

if userChoice ==
searchBooksbyId()

elif userChoice == 2:
searchBooksbyKeyword ()

elif userChoice ==
home ()

elif userChoice ==
user ()

elif userChoice ==
exiting ()

else:
validOption ()

265 # Function to display the add book menu and handle user choices
266 def addBookMenu() :

267 # Add book menu options

268 print ("1. Home")

269 print ("2. Back")

270 print ("3. Exit")

271 userChoice = int (input ("Enter your Choice to Continue : "))
272 print ("

273

274 # User choices handling

275 if userChoice ==

276 home ()

277 elif userChoice ==

278 modifyBook ()

279 elif userChoice ==

280 exiting ()

281 else:

282 validoption ()

283

284

285 # Function to add a new book to the library

286 def addBook():

287 print ("

288 print ("Add Book")

289 print ("

290 # Get user input for book details

291 bookId = int (input ("Enter the Book ID : "))

292 bookName = input ("Enter the Book Name : ")

293 publicationYear = int (input ("Enter the Book Publication Year : "))
294 author = input ("Enter the Book Author Name : ")

295 print ("

296

297 c.execute ("SELECT bookId FROM books")

298 result = c.fetchall()

299 db.commit ()

300

301 if (bookId,) in result:

302 print (

303 f'The book of book id "{bookId}" is already available in the
304 digital library.'

305)

306 print ("

307 addBookMenu ()

308 else:

309 # Execute SQL query to insert the new book into the database
310 c.execute (

311 "INSERT INTO books (bookId, bookName, publicationYear, author)
312 VALUES (%s, %s, %s, %s)",

313 (bookId, bookName, publicationYear, author),

314)

315 db.commit ()

316

317 # Notify the user that the book has been added successfully
318 print ("Book added Successfully!")

319 print ("

320 addBookMenu ()

321

322

323 # Function to display the delete book menu and handle user choices
324 def deleteBookMenu() :

325 # Delete book menu options

326 print ("1. Home'")

327 print ("2. Back")

328 print ("3. Exit")

329 userChoice = int (input ("Enter your Choice to Continue : "))

330

331

332 # User choices handling

333 if userChoice ==

334 home ()

335 elif userChoice ==

336 admin ()

337 elif userChoice ==

338 exiting ()

339 else:

340 validOption ()

341

342

343 # Function to delete a book from the library

344 def deleteBook():

345 print ("

346 print ("Delete Book")

347 print ("

348 # Get user input for the book ID to be deleted

349 bookId = int (input ("Enter the Book ID : "))

350 choice = input ("Are you sure to delete the Book? (Yes/No) : ")

351

352

353 c.execute ("SELECT bookId FROM books")

354 result = c.fetchall()

355 db.commit ()

356

357 if choice.lower() in ["yes", "y"]:

358 if (bookId,) in result:

359 # Execute SQL query to delete the book from the database

360 c.execute ("DELETE FROM books WHERE bookId=%$s", (bookId,))

361 db.commit ()

362

363 # Notify the user that the book has been deleted successfully
364 print ("Book deleted Successfully!")

365 print ("

366 deleteBookMenu ()

367 else:

368 print (

369 £'The book of book id "{bookId}" does not available in the
370 digital library.'

371)

372 print ("

373 deleteBookMenu ()

374 elif choice.lower() in ["no",

375 print ("

376 print ("Book Not Deleted!")

377 print ("

378 deleteBookMenu ()

379 else:

380 validOption ()

381

382

383 # Update book menu options

384 def updateBookMenu() :

385 print ("1. Home")
386 print ("2. Back")
387 print ("3. Ex1t")
388 userChoice = int
389

390

391 # User choices handling
392 if userChoice ==

393 home ()

394 elif userChoice ==

395 updateUser ()

396 elif userChoic

(input ("Enter your Choice to Continue : "))

16| Page

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

exiting ()
else:
validOption ()

def notBook (bookId) :

print (£'The book of book id "{bookId}" does not available in the

digital library.')
print ("
updateBookMenu ()

Function to update book details
def updateBook():
print ("

Book ID")

Update the Book Name")

Update the Book Publication Year")

Update the Book Author Name")

Home")

Back")
print ("7. Exit")
userChoice = int (input ("Enter your Choice to Continue : "))
print ("

c.execute ("SELECT bookId FROM books")
result = c.fetchall()
db.commit ()

User choices handling
if userChoice ==

currentBookId = int (input ("Enter the Current Book ID
newBookId = int (input ("Enter the New Book ID : "))

if (currentBookId,) in result:
Execute SQL query to update the Book ID
c.execute (

"))

"UPDATE books SET bookId=%s WHERE bookId=%s", (newBookId,

currentBookId)

)
db.commit ()

print ("Book ID changed Successfully!")
print ("
updateBookMenu ()
else:
notBook (currentBookId)

elif userChoice == 2:
bookId = int (input ("Enter the Book ID : "))
newBookName = input ("Enter the New Book Name : ")

if (bookId,) in result:
Execute SQL query to update the Book Name
c.execute (
"UPDATE books SET bookName=%s WHERE bookId=%s",
(newBookName, bookId)
)
db.commit ()

print ("Book Name changed Successfully!")
print ("
updateBookMenu ()

else:

17

Page

notBook (bookId)

elif userChoice ==
bookId = int (input ("Enter the Current Book ID : "))
newPublicationYear = input ("Enter the New Publication Year : ")

if (bookId,) in result:
Execute SQL query to update the Publication Year
c.execute (
"UPDATE books SET publicationYear=%s WHERE bookId=%s",
(newPublicationYear, bookId),
)
db.commit ()

print ("Book Publication Year changed Successfully!")
print ("
updateBookMenu ()

elif userChoice ==
bookId = int (input ("Enter the Current Book ID : "))

newAuthor = input ("Enter the New Author Name : ")

if (bookId,) in result:
Execute SQL query to update the Author Name
c.execute (
"UPDATE books SET author=%s WHERE bookId=%s",
(newAuthor, bookId),
)
db.commit ()

print ("Book Author Name changed Successfully!")
print ("
updateBookMenu ()
else:
notBook (bookId)

elif userChoice == 5:
home ()

elif userChoice ==
modifyBook ()

elif userChoice == 7:
exiting ()

else:
validOption ()

Function to display the issue book menu and handle user choices

def issueBookMenu() :
print ("1. Home")
print ("2. Back")
print ("3. Exit")
userChoice = int
print ("

(input ("Enter your Choice to Continue : "))

User choices handling
if userChoice ==
home ()
elif userChoice ==
admin ()
elif userChoice ==
exiting ()
else:
validOption ()

Function to issue a book

def issueBook():
print ("
print ("Issue Book")
print ("
bookId = int (input ("Enter the Book ID to be Issued: "))
userId = int (input ("Enter the User ID to whom Book will be Issued: "))

Execute SQL query to check the issue status of the book

c.execute ("SELECT userId FROM users'")

resultl = c.fetchall()

c.execute ("SELECT bookId FROM books")

result?2 = c.fetchall()

c.execute ("SELECT issueStatus FROM books WHERE bookId=%s", (bookId,))
result3 = c.fetchall ()

db.commit ()

if (userId,) in resultl:
if (bookId,) in result2:
Check if the book is not already issued
if result3[0][0] == "not issued":
Execute SQL queries to update book details and mark it as

c.execute (
"UPDATE books issueDate = CURRENT DATE WHERE bookId

(bookId,),

.execute (
"UPDATE books issueTime = CURRENT TIME WHERE bookId

(bookId,),

.execute (
"UPDATE books issueStatus = 'issued' WHERE bookId =

(bookId,),

.execute (
"UPDATE books returnDate NULL WHERE bookId

.execute (
"UPDATE books returnTime NULL WHERE bookId

.execute (
"UPDATE books SET issuedUserId = %s WHERE bookId
(userId, bookId),
)
db.commit ()
c.execute (
"select issuedUserId,bookName,issueDate,issueTime from
books where bookId=%s",
(bookId,),
)
result = c.fetchall ()
c.execute (
"INSERT INTO issuedBooksDetails (userId,
bookId,bookName,issueDate,issueTime) VALUES (%s, %s, %s, %s, %s)",
(result[0][0], bookId, result[0][1l], result[0][2],
result[0][3]1),
)
db.commit ()

f'Book of Book Id "{bookId}" is issued successfully to
the User of User Id "{userId}".'
)
print ("
returnPolicy ()
issueBookMenu ()
else:
Notify the user that the book is already issued
print (
f'The book of book id "{bookId}" is already issued by
another user.'
)
print ("
issueBookMenu ()
else:
print (
f"Book with book id {bookId} does not available in the
digital library."
)
print ("
issueBookMenu ()
else:
print (f"User with user id {userId} does not exists in the digital
library.")
print ("
issueBookMenu ()

Function to display the return book menu and handle user choices
def returnBookMenu () :

print ("1. Home'")

print ("2. Back")

print ("3. Exit")

userChoice = int (input ("Enter your Choice to Continue : "))

print ("

User choices handling

if userChoice == 1:
home ()

elif userChoice ==
admin ()

elif userChoice ==
exiting ()

else:
validOption ()

Function to return a book
def returnBook():
print ("
print ("Return Book")
print ("
bookId int (input ("Enter the Book ID to be Returned: "))

Execute SQL query to check the issue status of the book

c.execute ("SELECT bookId FROM books")

resultl = c.fetchall ()

c.execute ("SELECT issueStatus FROM books WHERE bookId=%s", (bookId,))
result2 = c.fetchall()

db.commit ()

if (bookId,) in resultl:
Check if the book is issued
if result2[0][0] == "issued":
Execute SQL queries to update book details and mark it as

returned
.execute (
"UPDATE books SET returnDate CURRENT DATE WHERE bookId

(bookId,),

.execute (
"UPDATE books SET returnTime CURRENT TIME WHERE bookId

(bookId,),

.execute (
"UPDATE books SET issueStatus = 'not issued' WHERE bookId =

(bookId,),
)
db.commit ()
c.execute (
"select issuedUserId,returnDate,returnTime from books where
bookId=%s",
(bookId,),
)
result = c.fetchall ()
c.execute (
"UPDATE issuedBooksDetails SET returnDate = %s, returnTime
= %s WHERE userId = %s AND bookId = %s",
(result[0][1], result[0][2], result[0][0], bookId),
)

db.commit ()
c.execute (
"UPDATE books SET issuedUserId = NULL WHERE bookId = %s",

)
db.commit ()

print (£'The book of book id "{bookId}" is returned
successfully.')

c.execute ("select issueDate from books WHERE bookId = %s",
(bookId,))

issueDate = c.fetchall()

c.execute ("select returnDate from books WHERE bookId =
(bookId,))

returnDate = c.fetchall ()

db.commit ()

c.execute ("UPDATE books issueDate NULL WHERE bookId
(bookId,))

c.execute ("UPDATE books issueTime NULL WHERE bookId
(bookId,))

c.execute ("UPDATE books returnDate NULL WHERE bookId
(bookId,))

c.execute ("UPDATE books returnTime NULL WHERE bookId
(bookId,))

db.commit ()

dl = datetime.strptime (£f"{issueDate[0] [0
d2 = datetime.strptime (f"{returnDate[0] [0
dateDifference = dl - d2

1}", "$Y-%m-%d")
]

4
1", "$Y-3m-%d")

if dateDifference.days > 14:
extraDays = dateDifference.days - 14
fine = extraDays * 5
print ("Fine(in Rs.) : ", fine)
c.execute (

"update issuedBooksDetails set fineInRs=%s where
userId=%s and bookId=%s",
(fine, result[0][0], bookId),
)
db.commit ()
else:
fine = 0 * 5
print ("Fine(in Rs.) : ", fine)
c.execute (
"update issuedBooksDetails set fineInRs=%s where
userId=%s and bookId=%s",
(fine, result[0][0], bookId),
)
db.commit ()

print ("
returnBookMenu ()

else:
Notify the user that the book is not issued
print (£'The book of book id "{bookId}" is not issued by any

user.')
print ("
returnBookMenu ()
else:
print (£"Book with book id {bookId} does not available in the
digital library.")
print ("
returnBookMenu ()

Function to display the add user menu and handle user choices
def addUserMenu() :
Add user menu options
print ("1. Home")
print ("2. Back")
print ("3. Exit")
userChoice = int
print ("

(input ("Enter your Choice to Continue : "))

User choices handling

if userChoice == 1:
home ()

elif userChoice == 2:
modifyUser ()

elif userChoice ==
exiting ()

else:
validOption ()

Function to add a new user

def addUser () :
print ("
print ("Add User")
print ("
Get user input for user details
userId = int (input ("Enter the User ID : "))
userName = input ("Enter the User Name : ")
userPhoneNumber = input ("Enter the User Phone Number : ")
userEmailId = input ("Enter the User Email ID : ")
password = input ("Enter the User Password : ")
print ("

c.execute ("SELECT userId FROM users'")
result = c.fetchall ()
db.commit ()

22| Page

793

794 if (userId,) in result:

795 print (

796 f'The user of user number "{userId}" is already enrolled in the
797 digital library.'

798)

799 print ("

800 addUserMenu ()

801 else:

802 # Execute SQL query to insert the new user into the database
803 c.execute (

804 "INSERT INTO users (userId, userName, phoneNumber, emailld,
805 password) VALUES (%s, %s, %s, %s, %s)",

806 (userId, userName, userPhoneNumber, userEmailId, password),
807)

808 db.commit ()

809

810 # Notify the user that the user has been added successfully
811 print ("

812 print ("User added successfully!")

813 print ("

814 addUserMenu ()

815

816

817 # Function to display the delete user menu and handle user choices
818 def deleteUserMenu () :

819 # Delete user menu options

820 print ("1. Home'")

821 print ("2. Back")

822 print ("3. Exit")

823 userChoice = int (input ("Enter your Choice to Continue : "))

824 print ("

825

826 # User choices handling

827 if userChoice ==

828 home ()

829 elif userChoice == 2:

830 modifyUser ()

831 elif userChoice ==

832 exiting ()

833 else:

834 validOption ()

835

836

837 # Function to delete a user

838 def deleteUser():

839 print ("

840 print ("Delete User")

841 print ("

842 # Get user input for the user ID to be deleted

843 userId = int (input ("Enter the User ID : "))

844 choice input ("Are you sure to delete the User? (Yes/No) : ")
845

846 c.execute ("SELECT userId FROM users")

847 result = c.fetchall()

848 db.commit ()

849

850 if choice.lower () in ["yes", "y"]:

851 if (userId,) in result:

852 c.execute ("DELETE FROM users WHERE userId=%s", (userId,))
853 db.commit ()

854

855 # Notify the user that the user has been deleted successfully
856 print ("User deleted successfully!")

857 print ("

858 deleteUserMenu ()

else:
print (
f'The user of user id "{userId}" does not enrolled in the
digital library.'
)
print ("
deleteUserMenu ()
elif choice.lower() in ["no",
print ("
print ("User Not Deleted!")
print ("
deleteUserMenu ()
else:
validOption ()

Function to display the update user menu and handle user choices
def updateUserMenu() :

print ("1. Home")

print ("2. Back")

print ("3. Exit")

userChoice = int (input ("Enter your Choice to Continue : "))

User choices handling
if userChoice ==
home ()
elif userChoice ==
updateUser ()
elif userChoice ==
exiting ()
else:
validOption ()

def notUser (userId) :

print (£'The user of user id "{userId}" does not enrolled in the digital
library.')

print ("

updateBookMenu ()

Function to update user details
def updateUser():
print ("
print ("Update User Details")
print ("
Display user update options
print ("1. Update the User ID")
i Update the User Name")
Update the User Phone Number")
Update the User Email ID")
Update the User Password")
Home")
Back")
Exit")
Get user choice
userChoice = int (input ("Enter your Choice to Continue
print ("

c.execute ("SELECT userId FROM users'")
result = c.fetchall ()
db.commit ()

if userChoice ==
Update user ID
currentUserId = int (input ("Enter the Current User ID : "))

24| Page

925 newUserId = int (input ("Enter the New User ID : "))
926

927 if (currentUserId,) in result:

928 c.execute (

929 "update users set userId=%s where userId=%s", (newUserId,
930 currentUserId)

931)

932 db.commit ()

933

934 print ("User ID changed Successfully!")

935 print ("

936 updateUserMenu ()

937 else:

938 notUser (currentUserId)

939

940 elif userChoice ==

9241 # Update user name

942 userId = int (input ("Enter the User ID : "))

943 newUserName = input ("Enter the New User Name : ")
944

945 if (userId,) in result:

946 c.execute (

947 "update users set userName=%s where userId=%s",
948 (newUserName, userId)

949)

950 db.commit ()

951

952 print ("User Name changed Successfully!")

953 print ("

954 updateUserMenu ()

955 else:

956 notUser (userId)

957

958 elif userChoice ==

959 # Update user phone number

960 userId = int (input ("Enter the Current User ID : "))
961 newPhoneNumber = input ("Enter the New Phone Number : ")
962

963 if (userId,) in result:

964 c.execute (

965 "update users set phoneNumber=%s where userId=%s",
966 (newPhoneNumber, userId),

967)

968 db.commit ()

969

970 print ("User Phone Number changed Successfully!")
971 print ("

972 updateUserMenu ()

973 else:

974 notUser (userId)

975

976 elif userChoice ==

977 # Update user email ID

978 userId = int (input ("Enter the Current User ID : "))
979 newEmailId = input ("Enter the New Email ID : ")

980

981 if (userId,) in result:

982 c.execute (

983 "update users set emailld=%s where userId=%s", (newEmailld,
984 userId)

985)

986 db.commit ()

987

988 print ("User Email ID changed Successfully!")
989 print ("

990 updateUserMenu ()

else:
notUser (userId)

elif userChoice ==

Update user password
userId = int (input ("Enter the Current User ID : "))
newPassword = input ("Enter the New Password : ")
if (userId,) in result:

c.execute (

"update users set password=%s where userId=%s",
(newPassword, userId)
)
db.commit ()

print ("User Password changed Successfully!")
print ("
updateUserMenu ()
else:
notUser (userId)

elif userChoice
Return to
home ()
elif userChoice
Go back to the previous menu
modifyUser ()
elif userChoice ==
Exit the program
exiting ()
else:
validOption ()

Function to modify u
def modifyUser():
print ("
print ("Modify User")
print ("
Display user modification options
. Add User")
. Delete User")
. Update User Details")
. Home")
. Back")
. Exit")
Get user choice
userChoice = int (input ("Enter your Choice to Continue : "))
print ("

User choices handling

if userChoice == 1:
Add a new user
addUser ()

elif userChoice
Delete a u
deleteUser ()

elif userChoice ==
Update user details
updateUser ()

elif userChoice ==
Return to home
home ()

elif userChoice ==
Return to the previous menu
admin ()

elif userChoice ==

Exit the program
exiting ()

else:
validOption ()

Display users menu options
def displayUsersMenu() :
print ("1. Home")
print ("2. Back")
print ("3. Exit")
userChoice = int (input ("Enter your Choice to Continue : "))

User choices handling
if userChoice ==
home ()
elif userChoice ==
admin ()
elif userChoice ==
exiting ()
else:
validOption ()

Function to display all
def displayUsers():
print ("
print ("Display Users")
print ("
Fetch all users from the database
c.execute ("SELECT * FROM users ORDER BY userId")
result = c.fetchall()
db.commit ()

if result:
Display user information
print ("Users enrolled in the Digital Library are :")
i=0
for row in result:
i+4=1
r = length (i)
print (£"{i}. User ID : {row[O]}")
print (" + f£"User Name : {row[1l]}")
print (" + f£"Phone Number : {row[2]}")
print (" + £"Email ID : {row[3]}")
print (" + £"Admin Status : {row[5]}")
print ("
displayUsersMenu ()

else:
print ("No users found.")
print ("
displayUsersMenu ()

Search user menu options
def searchUsersMenu() :
print ("1. Home'")
print ("2. Back")
print ("3. Exit")
userChoice = int (input ("Enter your Choice to Continue : "))

User choices handling
if userChoice ==

home ()
elif userChoice ==

27| Page

searchUsers ()
elif userChoice ==

exiting ()
else:

validOption ()

Function to search users by ID
def searchUsersbyId() :
print ("
print ("Search Users by User ID")
print ("
Get user ID to search
userId = int (input ("Enter the User ID to search the User : "))

Search for the user in the database

c.execute ("SELECT * FROM users WHERE userId=%s", (userId,))
result = c.fetchall()

db.commit ()

if result:
Display user information if found
print (£'User enrolled in the Digital Library with the User ID
"{userId}" is :")
i=20
for row in result:
i +=1
r = length (i)
print (£"{i}. User ID : {row[O]}")
print (" " f"User Name : {row[1l]}")
print (" f"Phone Number : {row[2]}")
print (" f"Email ID : {row[3]}")
print (" f"Admin Status : {row[5]}")
print ("
searchUsersMenu ()

else:
Handle case when no user 1is found
print (£'No user found with the user id "{userId}".')
print ("
searchUsersMenu ()

Function to search users by keyword
def searchUsersbyKeyword() :
print ("
print ("Search Users by Keyword")
print ("
Get keyword input from the user
keyword = input ("Enter a Keyword to search Users : ")

Search for users with the given keyword in their names
c.execute (
"SELECT * FROM users WHERE userName LIKE '${}%' ORDER BY
userId".format (keyword)
)
result = c.fetchall ()
db.commit ()

if result:
Display user information if users are found
print (
f'Users enrolled in the Digital Library with the Keyword
"{keyword}" are :'

28| Page

for row in result:
i +=1
r = length (1)
print (£"{i}. User ID : {row[O]}")
print (" + f£"User Name : {row[1l]}")
print (" + f£"Phone Number : {row[2]}")
print (" + £"Email ID : {row[3]}")
print (" + £"Admin Status : {row[5]}")
print ("

searchUsersMenu ()

else:
Handle case when no user 1s found
print (£f'No users found with the keyword "{keyword}".')
print ("
searchUsersMenu ()

Function to search users
def searchUsers|() :
print ("
print ("Search Users")
print ("
User search menu
print ("1. Search by User ID")
print ("2. Search by Keyword")
print ("3. Home")
print ("4. Back")
print ("5. Exit")
userChoice = int (input ("Enter your Choice to Continue :
print ("

User choices handling

if userChoice == 1:
searchUsersbyId()

elif userChoice == 2:
searchUsersbyKeyword ()

elif userChoice == 3:
home ()

elif userChoice ==
admin ()

elif userChoice == 5:
exiting ()

else:
validOption ()

Function to modify books
def modifyBook() :
print ("
print ("Modify Book")
print ("
Book modification menu
. Add Book")
. Delete Book")
. Update Book Details")
. Home")
. Back")
. Exit")
userChoice = int (input ("Enter your Choice to Continue :
print ("

User choices handling

if userChoice ==
addBook ()

elif userChoice ==

29| Page

deleteBook ()

elif userChoice ==
updateBook ()

elif userChoice ==
home ()

elif userChoice ==
admin ()

elif userChoice ==
exiting ()

else:
validOption ()

Function to manage notes
def notes|():
print ("
print ("Notes")
print ("
Display menu options
print ("1. Modify Note")
. Display Notes")
. Search Notes")
. Home")
. Back")
. Exit")
>t user choice
userChoice = int (input ("Enter your Choice to Continue : "))
print ("

Handle user choice

if userChoice ==
modifyNote ()

elif userChoice ==
displayNotes ()

elif userChoice ==
searchNotes ()

elif userChoice == 4:
home ()

elif userChoice ==
user ()

elif userChoice == 6:
exiting ()

else:
validOption ()

Function to display the add note menu and handle user choices

def addNoteMenu() :
print ("1. Home"
print ("2. Back"

)

)

print ("3. Exit")

Get user choice

userChoice = int (input ("Enter your Choice to Continue : "))

Handle user choices

if userChoice ==
home ()

elif userChoice ==
modifyNote ()

elif userChoice ==
exiting ()

else:
validOption ()

Function to add note

30| Page

def addNote():
print ("
print ("Add Note")
print ("
Get note details from the user
noteNumber = int (input ("Enter the Note Number : "))
noteTitle = input ("Enter the Note Title : ")
noteDescription = input ("Enter the Note Description : ")
print ("

c.execute ("SELECT noteNumber FROM notes where userId=%s", (USERID,))
result = c.fetchall()
db.commit ()

if (noteNumber,) in result:
print (
f'The note of note number "{noteNumber}" is already exists in
digital library.'
)
print ("
addNoteMenu ()

else:
Execute SQL query to insert the note into the database
c.execute (

"INSERT INTO notes (userId, noteNumber, noteTitle,
noteDescription, updateDate, updateTime) VALUES (%s, %s, %s, %s,
CURRENT DATE, CURRENT TIME)",

(USERID, noteNumber, noteTitle, noteDescription),

)
db.commit ()

print (£'The note of note number "{noteNumber}" is added
successfully.')

print ("

addNoteMenu ()

Function to display the delete note menu and handle user choices
def deleteNoteMenu() :

Display menu options after deleting the note

print ("1. Home'")

print ("2. Back")

print ("3. Exit")

Get user choice

userChoice = int (input ("Enter your Choice to Continue : "))

print ("

Handle user choices

if userChoice ==
home ()

elif userChoice ==
modifyNote ()

elif userChoice ==
exiting ()

else:
validOption ()

Function to delete a note
def deleteNote():
print ("
print ("Delete Note")
print ("
Get note number to be deleted from the user
noteNumber = int (input ("Enter the Note Number to Delete the Note

choice . n)
print ("

c.execute ("SELECT noteNumber FROM notes where userId=%s", (USERID,))
result = c.fetchall()
db.commit ()

if choice.lower () in ["yes", "y"]:
if (noteNumber,) in result:

Execute SQL query to delete the note from the database

c.execute (
"delete FROM notes WHERE userId=%s and noteNumber=%s",
(USERID, noteNumber),

)

db.commit ()

print (£'The note of note number "{noteNumber}" is deleted
successfully.')

print ("

deleteNoteMenu ()

else:
print (
f'The note of note number "{noteNumber}" does not exists in
the digital library.'
)
print ("
deleteNoteMenu ()
elif choice.lower() in ["no",
print ("
print ("Note Not Deleted!")
print ("
deleteNoteMenu ()
else:
validOption ()

Function to display the update notes menu and handle user choices
def updateNotesMenu() :

print ("1. Home")

print ("2. Back")

print ("3. Exit")

Get user choice

userChoice = int (input ("Enter your Choice to Continue : "))

print ("

Handle user choices

if userChoice == 1:
home ()

elif userChoice ==
updateNotes ()

elif userChoice ==
exiting ()

else:
validOption ()

notNote (noteNumber) :
print(
f'The note of note number "{noteNumber}" does not exists in the
digital library.'
)
print ("
updateNotesMenu ()

Function to update a note
def updateNotes():
print ("
print ("Update Notes")
print ("
Display update options
print ("1l. Update the Note Number")
Update the Note Title")
Update the Note Description")
Home")
Back")
Exit")
Get user choice
userChoice = int (input ("Enter your Choice to Continue : "))
print ("

c.execute ("SELECT noteNumber FROM notes where userId=%s", (USERID,))
result = c.fetchall()
db.commit ()

Handle user choices

if userChoice ==
Update Note Number
currentNoteNumber = int (input ("Enter the Current Note Number : "))
newNoteNumber = int (input ("Enter the New Note Number : "))

if (currentNoteNumber,) in result:
Update date and time
c.execute (
"update notes set updateDate=CURRENT DATE where userId=%s
and noteNumber=%s",
(USERID, currentNoteNumber),
)

c.execute (

"update notes set updateTime=CURRENT TIME where userId=%s

and noteNumber=%s",
(USERID, currentNoteNumber),

)
Update Note Number
c.execute (
"update notes set noteNumber=%s where userId=%s and
noteNumber=%s",
(newNoteNumber, USERID, currentNoteNumber),
)

db.commit ()

print ("Note Number changed Successfully!")
print ("
updateNotesMenu ()
else:
notNote (currentNoteNumber)

elif userChoice ==
Update Note Title
noteNumber = int (input ("Enter the Current Note Number : "))
newTitle = input ("Enter the New Note Title : ")

if (noteNumber,) in result:
Update date and time
c.execute (
"update notes set updateDate=CURRENT DATE where userId=%s
and noteNumber=%s",
(USERID, noteNumber),
)
c.execute (
"update notes set updateTime=CURRENT TIME where userId=%s

and noteNumber=%s",
(USERID, noteNumber),
)
Update Note Title
c.execute (
"update notes set noteTitle=%s where userId=%s and

noteNumber=%s",
(newTitle, USERID, noteNumber),

)
db.commit ()

print ("Note Title changed Successfully!")
print ("
updateNotesMenu ()
else:
notNote (noteNumber)

elif userChoice ==
Update Note Description
noteNumber = int (input ("Enter the Current Note Number : "))
newDescription = input ("Enter the New Note Description : ")

if (noteNumber,) in result:
Update date and time
c.execute (
"update notes set updateDate=CURRENT DATE where userId=%s

and noteNumber=%s",
(USERID, noteNumber),

)

c.execute (
"update notes set updateTime=CURRENT TIME where userId=%s

and noteNumber=%s",
(USERID, noteNumber),
)
Update Note Description
c.execute (
"update notes set noteDescription=%s where userId=%s and

noteNumber=%s",
(newDescription, USERID, noteNumber),

)
db.commit ()

print ("Note Description changed successfully!")
print ("
updateNotesMenu ()
else:
notNote (noteNumber)

elif userChoice ==
home ()

elif userChoice == 6:
modifyNote ()

elif userChoice == 7:
exiting ()

else:
validOption ()

Function to handle note modifications
def modifyNote():

print ("

print ("Modify Notes")

print ("

Display modification options

print ("1. Add Note")

print ("2. Delete Note")

3| Page

print (' Update Notes")

3.

print ("4. Home")
5.
6.

v
v
v
v

(
(
print (' Back")
print (' Exit")
Get user choice
userChoice = int (input ("Enter your Choice to Continue : "))
print ("

Handle user choices

if userChoice ==
addNote ()

elif userChoice ==
deleteNote ()

elif userChoice ==
updateNotes ()

elif userChoice ==
home ()

elif userChoice ==
admin ()

elif userChoice ==
exiting ()

else:
validOption ()

Function to display the display notes menu and handle user choices
def displayNotesMenu() :
print ("1. Home'")
print ("2. Back")
print ("3. Exit")
userChoice = int (input ("Enter your Choice to Continue : "))
print ("

Handle user choic

if userChoice ==
home ()

elif userChoice == 2:
user ()

elif userChoice ==
exiting ()

else:
validOption ()

Function to display notes
def displayNotes():
Fetch all notes from the database
c.execute ("SELECT * FROM notes ORDER BY noteNumber")
result = c.fetchall ()
db.commit ()

Check 1f there are notes available
if result:
print (f"Notes available in the Digital Library are :")
i =20
for row in result:
i +=1
r = length (i)
print (£"{i}. Note Number : {row[1l]}")
print (" + f"Note Title : {row[2]}")
print (" + f"Note Description : {row[3]}")
print (" + f"Update Date : {row[4]}")
print (" + f"Update Time : {row[5]}")
print ("
displayNotesMenu ()

35| Page

else:
If no notes are found
print ("No notes found.")
print ("
displayNotesMenu ()

Function to display the search notes menu and handle user choices
def searchNotesMenu () :

print ("1. Home")

print ("2. Back")

print ("3. Exit")

userChoice = int (input ("Enter your Choice to Continue : "))

Handle user choices

if userChoice ==
home ()

elif userChoice ==
searchNotes ()

elif userChoice ==
exiting ()

else:
validOption ()

Function to search notes by note number
def searchNotesbynoteNumber () :
Get the note number to search
noteNumber = int (input ("Enter the Note Number to search the Note : "))

Execute SQL query to fetch notes with the given note number
c.execute ("SELECT * FROM notes WHERE bookId=%s", (noteNumber,))
result = c.fetchall()

db.commit ()

Check 1if notes are found
if result:
print (
f'Note available in the Digital Library with the Note Number
"{noteNumber}" is :'
)
i=0
for row in result:
i +=1
r = length (i)
print (£"{i}. Note Number : {row[1l]}")
print (" " * r + f£"Note Title : {row[2]}")
print(" " * r + f"Note Description : {row[3]}")
print ("
searchNotesMenu ()

else:
If no notes are found with the given note number
print (£'No note found with the note number "{noteNumber}".')
print ("
searchNotesMenu ()

Function to search notes by keyword
def searchNotesbyKeyword() :
print ("
print ("Search Notes by Keyword")
print ("
Get keyword from user
keyword = input ("Enter a Keyword to search Notes : ")

36| Page

7

Execute SQL query to fetch notes with the given keyword in the title
c.execute (
"SELECT * FROM notes WHERE noteTitle LIKE '%{}%' ORDER BY
noteNumber" . format (
keyword
)

)
result = c.fetchall()

db.commit ()

Check 1f notes are found
if result:
print (
f'Notes available in the Digital Library with the Keyword
"{keyword}" are :'
)
i=0
for row in result:
i +=1
r = length (i)
print (£"{i}. Note Number : {row[1l]}")
print (" " * r + f£"Note Title : {row[2]}")
print(" " * r + f"Note Description : {row[3]}")
print ("
searchNotesMenu ()

else:
If no notes are found with the given keyword
print (£'No notes found with the keyword "{keyword}".')
print ("
searchNotesMenu ()

Function to handle note searching
def searchNotes () :
print ("
print ("Search Notes")
print ("
Display search options
("1. Search by Note Number")
. Search by Keyword")
. Home")
. Back")
. Exit")
Get user choice
userChoice = int (input ("Enter your Choice to Continue : "))
print ("

Handle user choices

if userChoice ==
searchNotesbynoteNumber ()

elif userChoice ==
searchNotesbyKeyword ()

elif userChoice ==
notes ()

elif userChoice ==
modifyNote ()

elif userChoice ==
exiting ()

else:
validOption ()

unction to display the change admin menu and handle user choices
changeAdminMenu () :
print ("1. Home'")

print ("2. Back")

print ("3. Exit")

userChoice = int (input ("Enter your Choice to Continue : "))
print ("

Handle user choices

if userChoice ==
home ()

elif userChoice ==
admin ()

elif userChoice ==
exiting ()

else:
validOption ()

Function to change the admin status

def changeAdmin () :
print ("
print ("Change Admin")
print ("
Get new admin's ID and password from the user
newAdminId = int (input ("Enter the New Admin's User ID : "))
newAdminPassword = input ("Enter the New Admin's Password : ")
choice = input ("Are you sure to change the Admin? (Yes/No) : ")
print ("

Check 1f the entered user ID exists

c.execute ("SELECT password FROM users WHERE userId=%s", (newAdminId,))
result = c.fetchall()

db.commit ()

Check the user's choice to proceed or cancel
if choice.lower () in ["yes", "y"]:
If the user ID is not valid, print an error message
if len(result) == O0:
print ("Please enter a valid user id!")
else:
If the entered password matches the user's password
if newAdminPassword == result[0][0]:
Update admin status for all users
c.execute (
"UPDATE users SET adminStatus='not admin' WHERE
adminStatus ='admin'"
)
c.execute (
"UPDATE users SET adminStatus='admin' WHERE userId

(newAdminId,),
)
db.commit ()

print ("Admin Changed Successfully!")
print ("
changeAdminMenu ()

else:
print ("Please enter a valid password!")

elif choice.lower () in ["no", "n"]:

print ("Admin Not Changed!")

print ("

changeAdminMenu ()
else:

validOption ()

38| Page

Function to authenticate admin
def authAdmin () :
print ("
print ("Admin Authentication")
print ("
adminId = int (input ("Enter the Admin's User ID : "))
adminPassword = input ("Enter the Admin's User Password : ")

Check 1if the entered admin ID exists

c.execute ("SELECT password FROM users WHERE userId=%s", (adminId,))
result = c.fetchall()

db.commit ()

If the entered admin ID is not valid, print an error message
if len(result) ==
print ("
print ("Please enter a valid user id!")
print ("
else:
If the entered password matches the admin's password
if adminPassword == result[0][0]:
global USERID
USERID = adminId
print ("\033[0;35m \033[0;0m")
print ("\033[0;36mAdmin is verified successfully.\033[0;0m")
print ("\033[0;35m \033[0;0m")
admin() # Call the admin menu
else:
print ("Please enter a valid password!")

Function to display the admin menu
def admin () :

Login into User Panel")
Modify User")
Display Users")
Search Users")
Modify Book")
Issue Book")
Return Book")
Change Admin")
Home")
. Back")
. Exit")
userChoice = int (input ("Enter your Choice to Continue :
print ("

Handle user choices
if userChoice == 1:
print ("You are successfully login into user panel.")

user ()
elif userChoice ==
modifyUser ()
elif userChoice ==
displayUsers()
elif userChoice ==
searchUsers ()
elif userChoic
modifyBook ()
elif userChoice ==

39| Page

issueBook ()

elif userChoice ==
returnBook ()

elif userChoice ==
changeAdmin ()

elif userChoice ==
home ()

elif userChoice == 10:
authAdmin ()

elif userChoice == 11:
exiting ()

else:
validOption ()

Function to authenticate a user
def authUser () :
print ("
print ("User Authentication")
print ("
userId = int (input ("Enter the User ID : "))
password = input ("Enter the User Password : ")

Check if the entered user ID exists

c.execute ("SELECT password FROM users WHERE userId=%s", (userld,))
result = c.fetchall()

db.commit ()

If the entered user ID is not valid, print an error message
if len(result) ==
print ("
print ("Please enter a wvalid user id!")
print ("
else:
If the entered password matches the user's password
if password == result[0][0]:
global USERID
USERID = userId
print ("\033[0;35m \033[0;0m")
print ("\033[0;36mUser is verified successfully.\033[0;0m")
print ("\033[0;35m \033[0;0m")
user () # Call the user menu
else:
print ("Please Enter a Valid Password!")

Function to search & display the wikipedia articles
def wikipediaArticles():
Function to fetch article details
def fetchingArticle (keyword, articleLength=1500) :
Creating a Wikipedia API object
wiki = wikipediaapi.Wikipedia (language="en", user agent="digital-
library/1.1")
Fetching the page for the given search query
page = wiki.page (keyword)

Checking i1f the page exists
if not page.exists():
print(
f'Sorry, the Wikipedia Article for the keyword "{keyword}"
does not exists.'

Displaying article title

print ("Title : ")

print (page.title)

print ("URL : ")

print (page.fullurl)

Displaying a summary of the article within the specified
length

print ("Summary : ")

start = 0
end = 157
article = page.summary[:articlelLength]

while end <= articlelength:
print (article[start:end])
start += 157
end += 157

print ("Search Articles")

print ("

Taking user input for the keyword and article length

keyword = input ("Enter the Keyword for searching the Wikipedia Article

articleLength int (input ("Enter the Article Length : "))
print ("

Calling the function to fetch and display the article
fetchingArticle (keyword, articlelength)

userMenu ()

Function to search & display the news
def news () :
def fetchNews (apiKey, country="in", category="science", numArticles=5):
url = f"https://newsapi.org/v2/top-headlines"
params = {
"apiKey": apiKey,
"country": country,
"category'": category,
"pageSize": numArticles,
}

response = requests.get (url, params=params)

if response.status _code == 200:
news_data = response.json()
articles = news data.get ("articles", [])

for i, article in enumerate(articles, start=1l):
print (£"{i}. {article['title']}")
print (£" Source: {article['source']['name']}")
print (£" URL: {article['url']}")
print ("

else:
print (f"Error {response.status code}: {response.text}")

API KEY = "YOUR API_KEY"

print

print ("News")

print

print ("Country codes are :

41| Page

print ("https://newsapi.org/sources")

print ("Categories are : ")

print ("business, entertainment, general, health, science, sports,
technology")

print ("

country = input ("Enter the Country Code : ")

category = input ("Enter the Category : ")

numArticles = int (input ("Enter the Number of Articles : "))

print ("

fetchNews (API_KEY, country, category, numArticles)

userMenu ()

Function to display the issued books details of a user
def issuedBooksDetails():

print ("

print ("Issued Books Details")

print ("

returnPolicy ()

c.execute (
"SELECT * FROM issuedBooksDetails WHERE userId=%s ORDER BY bookId",
(USERID,)
)
result = c.fetchall()
db.commit ()

if result == []:
print ("No Books Issued!")
print ("
userMenu ()

else:
i =20
for row in result:
i +=1
r = length (i)
. Book ID : ", row[l])
"Book Name : ",
"Issue Date : "
"Issue Time : "
"Return Date :
"Return Time :
"Fine (in Rs.)

userMenu ()

Function to display user menu
def user():
print ("
print ("User")
print ("
Check 1if the entered user ID exists
c.execute ('SELECT userId FROM users WHERE adminStatus="admin"')
result = c.fetchall ()
db.commit ()

if == USERID:
Login into Admin Panel")
About the Library")
News")
Wikipedia Articles")
Display Books")

Search Books")

Issued Books Details")

Notes")

Home")

. Back")

print ("11l. Exit")
userChoice = int (input ("Enter your Choice to Continue : "))
print ("

Handle user choices

if userChoice ==
print ("You are successfully login into admin panel.")
print ("

admin ()

elif userChoice ==
aboutLibrary ()

elif userChoice ==
news ()

elif userChoice ==
wikipediaArticles()

elif userChoice ==
displayBooks ()

elif userChoice ==
searchBooks ()

elif userChoice == 7:
issuedBooksDetails ()

elif userChoice ==
notes ()

elif userChoice == 9:
home ()

elif userChoice == 10:
authUser ()

elif userChoice == 11:

exiting ()
else:
validOption ()

else:
About Library")
News")
Wikipedia Articles")
Display Books")
Search Books")
Issued Books Details")
Notes")
Home")
Back")
. Exit")
userChoice = int (input ("Enter your Choice to Continue : "))
print ("

Handle user choices

if userChoice ==
aboutLibrary ()

elif userChoice == 2:
news ()

elif userChoice ==
wikipediaArticles ()

elif userChoice == 4:
displayBooks ()

elif userChoice ==
searchBooks ()

elif userChoice == 6:
issuedBooksDetails ()

elif userChoice ==
notes ()

elif userChoice ==
home ()

elif userChoice ==
authUser ()

elif userChoice == 10:
exiting ()

else:
validOption ()

Function to display the ma
def home () :
while True:

print ("
print ("\033[1;32m \033[0;0m")
print (

"\033[1;31m"

+ pyfiglet.figlet format ("Welcome to the", font="banner3",

width=1000)
)
print(
pyfiglet.figlet format ("Digital Library", font="banner3",
width=1000)
+ "\033[0;0m"
)
\033[0;0m")

prlnt("3 Exit")
userChoice = int (input ("Enter your Choice to Continue : "))

Handle user choices

if userChoice == 1:
authAdmin ()

elif userChoice ==
authUser ()

elif userChoice == 3:
exiting ()

else:
validOption ()

the main menu function

MySOL

Database

Library Database:

Enter password: #hikkkiskkskkk

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 9

Server version: 8.1.0 MySQL Community Server - GPL

Copyright (c) 2000, 2023, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql> use library;

Database changed
mysql> show tables;

issuedbooksdetails
notes

rows in set (0.07 sec)

Books Table:

mysql> desc books;

Field Type Default

bookId int NULL
bookName varchar(50) NULL
publicationYear int NULL
issueDate date NULL
issueTime time NULL
returnDate date NULL
returnTime time NULL
author varchar(40) NULL
issueStatus varchar(10) not issued
issuedUserId int NULL

10 rows in set (0.02 sec)

mysql> select * from books;

| bookId | bookName | publicationYear issueDate issueTime returnDate returnTime author issueStatus | issuedUserId

3000
LHeoe
5000

| English

| Hindi

| Histroy
5263 | physics

|

|

| 2005 NULL NULL NULL NULL Sman not issued NULL
|

|

|

| 5658

|

6

|

| 2011 NULL NULL NULL NULL Rman not issued NULL

| 2010 | NULL NULL NULL NULL NULL not issued NULL

| 2003 | 2023-12-14 | 14:31:21 NULL NULL H.C. Verma issued 1025

cs | 2016 NULL NULL NULL NULL Sunita Arora not issued NULL
12305 |
)

mathematics 2011 NULL NULL NULL NULL V.V. Acharya not issued NULL

rows in set (0.01 sec

Users Table:

mysql> desc users;

Field Type Default

|

| int NULL

| varchar(50) NULL
phoneNumber | varchar(13) NULL

|

I

|

| userId

|

|

| emailld varchar(u40) NULL
|

|

6

userName

password varchar(4e) NULL
adminStatus | varchar(9) not admin

rows in set (0.00 sec)

mysql> select * from users;

| userId | userName | phoneNumber | emailld | password adminStatus |

1023	Aman 9564823675 abc@gmail.com Aman@16023	not admin	
1024	Cman 8564526545 cman1024@gmail.com	Cman@l@24	not admin
1025	Bman 8623254587 def@gmail.com Bman@1025	admin	
1026	Dman 9456875462 dman1026@gmail.com	Dman@1026	not admin
1028	Eman 8564231547 emanl1028@gmail.com	Eman@l028 not admin	

5 rows in set (0.00 sec)

Notes Table:

mysql> desc notes;

e —+
| Field Default | Extra |
e ———t

| userId i NULL

| noteNumber i NULL

| noteTitle varchar(50) NULL

| noteDescription varchar(10008) NULL

| updateDate date NULL

| updateTime

e

6 rows in set (0.00

mysql> select * from notes
Fmmm == ——t—

| userId | noteNumber | noteTitle | noteDescription

| updateDate | updateTime |
+

| 1025 | 1 | ISRO | The Indian Space Research Organisation (ISRO) is the national space agency of India. It oper
ates as the primary research and development arm of the Department of Space (DoS), which is directly overseen by the Prime Minister of India, while the Chai
rman of ISRO also acts as the executive of DoS. | 2023-12-14 | 18:03:18 |

| 1023 | 1 | Massachusetts Institute of Technology | The Massachusetts Institute of Technology (MIT) is a private land-grant research university
in Cambridge, Massachusetts. Established in 1861, MIT has played a significant role in the development of many areas of modern technology and science. Its r
eputation for innovation and rankings have made it one of the most prestigious universities in the world. | 2023-12-14 | 17:35:40

+- + +-

2 rows in set (0.81 sec)

Issued Books Details Table:

mysql> desc issuedbooksdetails

777777777 e ¥

Default | Extra |
———+

int
bookName varchar(50)
issueDate date
issueTime time
returnDate date
returnTime time
finelInRs i

—————— e —

issueTime | returnDate
e
1025 14:31:21 | NULL
| 1023 1:53 | 2023-12-14
| 1023 | 2023-12-14
+—— +
3 rows in set (@

Starting of the program:

Admin Authentication

Admin

into User Panel
ser

y Users

Modify User

. Add User
Delete User
. Update User Details

5. Back
. Exit

» your Choice to Continue :

~ ID :
* Name :

er Phone Number :
~ Email ID :

*~ Password :

Jser added successfully!

Home
Back

Exit

Enter your Choice to Continue

Enter your Choice to Continue

Update the User ID
Update the User Name
Update the User Phone Number
Update the User Email ID
Update the User Password
Home
Back

8

Enter your Choice to Continue

Modify User

Add User
Delete User
Update User Details
Home
S. Back
6. Exit
Enter your Choice to Continue

Admin

Login into User Panel
Modify User

Disp

Search

Modify

Issue Boc

Return Book

Change Admin
Home
Back

11. Exit

Add Book

Delete Book

Update Book Details
Home

Back

Exit

Enter your Choice to Continue

Enter
Enter e blication Year :

Author Name

2. Back

3. Exit

Enter your Choice to Cor

Update Book Details

cation Year
Author Name

Delete Book
Update Book Details
Home

Back

6. Exit

Enter your Choice to Continue

Admin

Login into User Panel

Modify User

Home
Back
Exit

Enter your Choice to Continue

You are successfully login into user panel.

Login into Admin Panel
Library
Wikipedia Articles
Disp ooks
ks
ks Details
Notes
Home
Back
Exit

Continue

fou are successfully login into admin panel.

\dmin

Login into User Panel
Modify User
Display

Search L

Return Bo
Change Admin
Home

Back

Exit

nter your Choice to Continue

Admin

User
Exit
Choice to Continue

User Authentication:

Authentication

nter the User ID
the User Password

Wikipedia Articles
Display Books
Search Books

ooks Details

to Continue

About Library:

out Library

r of Library's Establishment
Name of the Librarian Bman
Total Number of Books Available in t
Total Number of Use Enrolled in the

Add a Note
Home
Back
Exit
nter your Choice to Continue

Abo the Library
New

Wikipedia Articles
Display Books

Search Bo

ibrary

Library

s Details

» Choice to Continue

Country codes are

Categories are

business, entertainment, general, health, science, sports, technology

ter the Cou y Code
ter the Category

the Number of Articles :

DART Asteroid Impact Aftermath Caught On Webb and Hubble Space Telescopes - MSN
Source: msnNOW

. Watch: NASA Sends Cat Video To Earth From Spaceship 31 Million Km Away - NDTV
Source: NDTV News

Scientists now know what happened to a chunk of Earth's crust missing for millions of years - WION
Source: WION

Here's how astronauts workout in space and why is it important - IndiaTimes

Source: The Times of India

. Year-Ender 2023: A Look at the Top 11 Space Moments of 2023 | Mint - Mint
Source: Livemint

. Add Note
Home
Back
Exit

1ter your Choice to Continve :

About the Library
News
Wikipedia Articl
Display Books
Search Books

ed Books Details

Continue :

Wikipedia Articles

he Keyword for searching the Wikipedia Article

e Article Length

Summary :

The National Aeronautics and Space Administration (NASA) is an independent agency of the U.S. federal government responsible for the civil space program, ae
ronautics research, and space research. Established in 1958, NASA succeeded the National Advisory Committee for Aeronautics (NACA) to give the U.S. space dev
elopment effort a distinctly civilian orientation, emphasizing peaceful applications in space science. NASA has since led most American space exploration, in
cluding Project Mercury, Project Gemini, the 1968-1972 Apollo Moon landing missions, the Skylab space station, and the Space Shuttle. NASA currently supports
the International Space Station and oversees the development of the Orion spacecraft and the Space Launch System for the crewed lunar Artemis program, the C
ommercial Crew spacecraft, and the planned Lunar Gateway space station.

NASA's science is focused on better understanding Earth through the Earth Observing S

ystem; advancing heliophysics through the efforts of the Science Mission Directorate's Heliophysics Research Program; exploring bodies throughout the Solar S
ystem with advanced robotic spacecraft such as New Horizons and planetary rovers such as Perseverance; and researching astrophysics topics, such as the Big B
ang, through the James Webb Space Telescope, the Great Observatories and associated programs. NASA's Launch Services Program provides oversight of launch ope
rations and countdown management for its uncrewed launches.

1. Add Note
2. Home
3. Back

Enter your Choice to Continue

About the Library
News

Wikipedia Articles
Display Books

Search Books

Issued Books Details
Notes

Home

Back

0 @ N U DN R

10. Exit

Enter your Choice to Continue

Issued Books Details:

Issued Books Details
urn Policy
he issued book should be returned within 14 days(2 weeks).
the user kept t issued book for more than 14 days, then the u P 75 as fine for each extra day the user kept the issued book.

Book ID : 5658

Book Name : cs

Issue Date : 2023-12-14
Issue Time : 14:31:53
Return Date : 2023-12-14
Return Time : 14:32:04
Fine(in Rs.)

Add Note

Back

1
2. Home
3
4

Exit

Enter your Choice to Continue

e Library

Wikipedia Articles

1. Modify Note
2. Display Notes
3. Search Notes
4. Home

Continue

Not

Home

0 Continue

REFERENCES

1. News API
https://newsapi.org/
2. Wikipedia

https://www.wikipedia.org/
3.Python

https://www.python.org/

4. MysQL
https://www.mysql.com/

5. ANSI Escape Codes in Python

e https://pypi.org/project/ansi/
e https://replit.com/talk/learn/ANSI-Escape-Codes-in-

Python/22803

e https://gist.github.com/rene-
d/9e584a7dd2935d0f461904b9f2950007
6.Class 11th & 12th Computer Science Arihant Books

https://newsapi.org/
https://www.wikipedia.org/
https://www.python.org/
https://www.mysql.com/
https://pypi.org/project/ansi/
https://replit.com/talk/learn/ANSI-Escape-Codes-in-Python/22803
https://replit.com/talk/learn/ANSI-Escape-Codes-in-Python/22803
https://gist.github.com/rene-d/9e584a7dd2935d0f461904b9f2950007
https://gist.github.com/rene-d/9e584a7dd2935d0f461904b9f2950007

