close

COVID-19 Data Analysis and Visualization using Python, Pandas, and Matplotlib

October 7, 2024 ยท By @mritxperts
COVID-19 Data Analysis and Visualization using Python, Pandas, and Matplotlib

Objective:

To analyze and visualize COVID-19 statistics such as confirmed cases, recoveries, and deaths using Python. This project will involve using Pandas to manipulate data and Matplotlib to visualize it through various graphs and charts. The data will be stored in a CSV file, and the students will extract meaningful insights by analyzing trends, peaks, and patterns in the pandemic’s progression.


Project Modules:

  1. CSV Data Handling with Pandas:
  1. Data Analysis:
  1. Data Visualization using Matplotlib:

Step-by-Step Breakdown:

1. CSV File Creation (covid_data.csv)

The CSV file covid_data.csv should contain COVID-19 statistics from a dataset with the following columns:

   Date,Country,Confirmed,Recovered,Deaths
   2020-01-22,China,547,28,17
   2020-01-22,India,0,0,0
   2020-01-23,China,639,30,18
   2020-01-23,India,0,0,0
   ...

2. Python Program Structure

Modules to Use:

Sample Python Script:

import pandas as pd
import matplotlib.pyplot as plt

# Load data from CSV
def load_data(filename):
    data = pd.read_csv(filename)
    return data

# Calculate global statistics (total confirmed cases, recoveries, and deaths)
def calculate_global_stats(data):
    total_confirmed = data['Confirmed'].sum()
    total_recovered = data['Recovered'].sum()
    total_deaths = data['Deaths'].sum()

    return total_confirmed, total_recovered, total_deaths

# Plot the global trend of confirmed cases over time
def plot_global_trend(data):
    global_data = data.groupby('Date').sum()
    plt.figure(figsize=(10, 6))
    plt.plot(global_data.index, global_data['Confirmed'], color='blue', label='Confirmed Cases')
    plt.xlabel('Date')
    plt.ylabel('Number of Cases')
    plt.title('Global COVID-19 Confirmed Cases Over Time')
    plt.xticks(rotation=45)
    plt.legend()
    plt.grid(True)
    plt.show()

# Main program execution
if __name__ == "__main__":
    # Load data
    covid_data = load_data('covid_data.csv')

    # Calculate global statistics
    confirmed, recovered, deaths = calculate_global_stats(covid_data)
    print(f"Total Confirmed: {confirmed}, Total Recovered: {recovered}, Total Deaths: {deaths}")

    # Plot global trend
    plot_global_trend(covid_data)

3. Additional Functionalities:

  def plot_country_trend(data, country):
      country_data = data[data['Country'] == country]
      plt.figure(figsize=(10, 6))
      plt.plot(country_data['Date'], country_data['Confirmed'], color='green', label=f'{country} Confirmed Cases')
      plt.xlabel('Date')
      plt.ylabel('Number of Cases')
      plt.title(f'COVID-19 Confirmed Cases in {country} Over Time')
      plt.xticks(rotation=45)
      plt.legend()
      plt.grid(True)
      plt.show()
  def plot_global_pie_chart(confirmed, recovered, deaths):
      labels = ['Confirmed', 'Recovered', 'Deaths']
      sizes = [confirmed, recovered, deaths]
      colors = ['yellow', 'green', 'red']

      plt.figure(figsize=(7, 7))
      plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=140)
      plt.title('Global COVID-19 Statistics')
      plt.axis('equal')
      plt.show()

4. Data Visualization Options:

  def plot_line_chart(data):
      global_data = data.groupby('Date').sum()
      plt.plot(global_data.index, global_data['Confirmed'], color='blue')
      plt.xlabel('Date')
      plt.ylabel('Confirmed Cases')
      plt.title('Global COVID-19 Confirmed Cases Over Time')
      plt.grid(True)
      plt.show()
  def plot_country_comparison(data):
      top_countries = data.groupby('Country').sum().nlargest(10, 'Confirmed')
      plt.bar(top_countries.index, top_countries['Confirmed'], color='orange')
      plt.title('Top 10 Countries with Highest COVID-19 Confirmed Cases')
      plt.xlabel('Country')
      plt.ylabel('Confirmed Cases')
      plt.xticks(rotation=45)
      plt.show()

Conclusion:

This project will provide students with hands-on experience in handling real-world data using Python, Pandas, and Matplotlib. They will gain insights into COVID-19 data, learning how to perform analysis and visualizations that are valuable for understanding patterns and trends.


Extensions:


Would you like a blog post or further details for this project?

BIG VUE 75 Inch Interactive Flat Panel | Android 14 Smart Digital Board | 8GB RAM 128GB ROM | Multitouch Screen Display for Teaching, School, College, Institute, Classroom and Office Use

BIG VUE 75 Inch Interactive Flat Panel | Android 14 Smart Digital Board | 8GB RAM 128GB ROM | Multitouch Screen Display for Teaching, School, College, Institute, Classroom and Office Use